
A Guided Tour of CML,
the Coded Modulation Library

last updated on
Feb. 24, 2008

Matthew Valenti
Iterative Solutions
and West Virginia University
Morgantown, WV 26506-6109
mvalenti@wvu.edu

2/24/2008
CML Overview

2/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

3/84

What is CML?
CML is an open source toolbox for simulating capacity
approaching codes in Matlab.
Available for free at the Iterative Solutions website:
– www.iterativesolutions.com

Runs in matlab, but uses c-mex for efficiency.
First release was in Oct. 2005.
– Used code that has been developed starting in 1996.

2/24/2008
CML Overview

4/84

Features
Simulation of BICM (bit interleaved coded modulation)

• Turbo, LDPC, or convolutional codes.
• PSK, QAM, FSK modulation.
• BICM-ID: Iterative demodulation and decoding.

Generation of ergodic capacity curves
– BICM/CM constrained modulation.

Information outage probability
– Block fading channels.
– Blocklength-constrained channels (AWGN or fading)

Calculation of throughput of hybrid-ARQ.

2/24/2008
CML Overview

5/84

Supported Standards
Binary turbo codes:
– UMTS/3GPP, including HSDPA and LTE.
– cdma2000/3GPP2.
– CCSDS.

Duobinary turbo codes:
– DVB-RCS.
– WiMAX IEEE 802.16.

LDPC codes:
– DVB-S2.
– Mobile WiMAX IEEE 802.16e.

2/24/2008
CML Overview

6/84

Simulation Data is Valuable
CML saves simulation state frequently
– parameter called “save_rate” can be tuned to desired value.

CML can be stopped at any time.
– Intentionally: Hit CTRL-C within matlab.
– Unintentionally: Power failure, reboot, etc.

CML automatically resumes simulation
– If a simulation is run again, it will pickup where it left off.
– Can reset simulation by setting “reset=1”.
– SNR points can be added or deleted prior to restarting.

Simulations can be made more confident by requesting
additional trials prior to restarting.
– The new results will be added to the old ones.

2/24/2008
CML Overview

7/84

Compiled Mode
A flag called “compiled_mode” can be used to run CML
independently of matlab.
CML must first be compiled using the matlab compiler.
Advantages:
– Can run on machines without matlab.
– Can run on a grid computer.

2/24/2008
CML Overview

8/84

WebCML
WebCML is a new initiative sponsored by NASA and NSF.
Idea is to upload simulation parameters to a website and
hit a “simulate” button.
– Simulation begins on the webserver.
– The webserver will divide the simulation into multiple jobs which

are sent to a grid computer.
Results can be retrieved while simulation is running and
once it has completed.
The grid is comprised of ordinary desktop computers.
– The grid compute engine is a screen saver.

• Kicks in only when computer is idle.
– Users of WebCML are encouraged to donate their organizations

computers to the grid.

2/24/2008
CML Overview

9/84

Getting Started with CML
Download
– www.iterativesolutions.com/download.htm
– Unzip into a directory

• Root directory will be ./cml

About simulation databases
– A large database of previous simulation results can be

downloaded.
– Unzip each database and place each extracted directory into the

./cml/output directory

About c-mex files.
– C-mex files are compiled for PC computers.
– For unix and mac computers, must compile.

• Within matlab, cd to ./cml/source and type “make”.

2/24/2008
CML Overview

10/84

Starting and Interacting with CML
Launch matlab
Cd to the ./cml directory
Type “CmlStartup”
– This sets up paths and determines the version of matlab.

To run CML, only two functions are needed:
– CmlSimulate

• Runs one or more simulations.
• Simulation parameters are stored in text files.

– Currently .m scripts, to be changed to XML files soon.
• The argument tells CML which simulation(s) to run.

– CmlPlot
• Plots the results of one or more simulations.

2/24/2008
CML Overview

11/84

Scenario Files
and the SimParam Structure

The parameters associated with a set of simulations is
stored in a scenario file.
– Located in one of two directories

• ./cml/scenarios for publicly available scenarios
• ./cml/localscenarios for personal user scenarios
• Other directories could be used if they are on the matlab path.

– .m extension.
Exercise
– Edit the example scenario file: UncodedScenarios.m

The main content of the scenario file is a structure called
sim_param
– Sim_param is an array.
– Each element of the array is called a record and corresponds to a

single distinct simulation.

2/24/2008
CML Overview

12/84

Common Parameters
List of all parameters can be found in:
– ./cml/mat/DefineStructures.m
– ./cml/documentation/readme.pdf

Default values are in the DefineStructures.m file
Some parameters can be changed between runs, others
cannot.
– sim_param_changeable
– sim_param_unchangeable

2/24/2008
CML Overview

13/84

Dissecting the SimParam Structure:
The simulation type

sim_param(record).sim_type =
– ‘uncoded’

• BER and SER of uncoded modulation
– ‘coded’

• BER and FER of coded modulation
– ‘capacity’

• The Shannon capacity under modulation constraints.
– ‘outage’

• The information outage probability of block fading channels
• Assumes codewords are infinite in length

– ‘bloutage’
• Information outage probability in AWGN or ergodic/block fading channels
• Takes into account lenth of the code.

– ‘throughput’
• By using FER curves, determines throughput of hybrid ARQ
• This is an example of an analysis function … no simulation involved.

2/24/2008
CML Overview

14/84

Lesser Used Simulation Types
sim_param(record).sim_type =
– ‘bwcapacity’

• Shannon capacity of CPFSK under bandwidth constraints.
– ‘minSNRvsB’

• Capacity limit of CPFSK as a function of bandwidth

2/24/2008
CML Overview

15/84

Parameters Common to All Simulations

Sim_param(record).
– comment = {string}

• Text, can be anything.
– legend = {string}

• What to put in figure caption
– linetype = {string}

• Color, type, and marker of line. Uses syntax from matlab “plot”.
– filename = {string}

• Where to save the results of the simulation
• Once filename is changed, any parameter can be changed.

– reset = {0,1} with default of 0
• Indication to resume “0” or restart “1” simulation when run again.
• If reset = 1, any parameter may be changed.

2/24/2008
CML Overview

16/84

Specifying the Simulation
sim_param(record).
– SNR = {vector}

• Vector containing SNR points in dB
• Can add or remove SNR points between runs

– SNR_type = {‘Eb/No in dB’ or ‘Es/No in dB’}
• For some simulation types, only one option is supported.
• E.g. for capacity simulations, it must be Es/No

– save_rate = {scalar integer}
• An integer specifying how often the state of the simulation is saved
• Number of trials between saves.
• Simulation echoes a period ‘.’ every time it saves.

2/24/2008
CML Overview

17/84

Specifying the Simulation (cont’d)
sim_param(record).
– max_trials = {vector}

• A vector of integers, one for each SNR point
• Tells simulation maximum number of trials to run per point.

– max_frame_errors = {vector}
• Also a vector of integers, one for each SNR point.
• Tells simulation maximum number of frame errors to log per point.
• Simulation echoes a ‘x’ every time it logs a frame error.

– minBER = {scalar}
• Simulation halts once this BER is reached

– minFER = {scalar}
• Simulation halts once this FER is reached.

2/24/2008
CML Overview

18/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

19/84

Specifying Modulation
sim_param(record).
– modulation = {string}

• Specifies the modulation type
• May be ‘BPSK’, ‘QPSK’, ‘QAM’, ‘PSK’, ‘APSK’, ‘HEX’, or ‘FSK’
• ‘HSDPA’ used to indicate QPSK and QAM used in HSDPA.
• All but FSK are 2 dimensional modulations

– Uses a complex scalar value for each symbol.
• Default is ‘BPSK’
• New (version 1.9 and above): Can also be set to “custom”.

– mod_order = {integer scalar}
• Number of points in the constellation.
• Power of 2.
• Default is 2.
• In some cases, M=0 is used to indicate an unconstrained Gaussian input.

– S_matrix = {complex vector}
• Only used for “custom” modulation type.
• A vector of length “mod_order” containing the values of the symbols in the

signal set S.

2/24/2008
CML Overview

20/84

Specifying Modulation
sim_param(record).
– mapping = {integer vector}

• A vector of length M specifying how data bits are mapped to symbols.
• Vector contains the integers 0 through M-1 exactly once.
• ith element of vector is the set of bits associated with the ith symbol.
• Alternatively, can be a string describing the modulation, like ‘gray’ or ‘sp’
• Default is ‘gray’

– framesize = {integer scalar}
• The number of symbols per Monte Carlo trial
• For coded systems, this is number of bits per codeword

– demod_type = {integer scalar}
• A flag indicating how to implement the demodulator

0 = log-MAP (approximated linearly)
1 = max-log-MAP
2 = constant-log-MAP
3 and 4 other implementations of log-MAP

• Max-log-MAP is fastest.
• Does not effect the uncoded error rate.

– However, effects coded performance

2/24/2008
CML Overview

21/84

M-ary Complex Modulation
μ = log2 M bits are mapped to the symbol xk, which is chosen from the
set S = {x1, x2, …, xM}
– The symbol is multidimensional.
– 2-D Examples: QPSK, M-PSK, QAM, APSK, HEX

• These 2-D signals take on complex values.
– M-D Example: FSK

• FSK signals are represented by the M-dimensional complex vector X.
The signal y = hxk + n is received
– h is a complex fading coefficient (scalar valued).
– n is complex-valued AWGN noise sample
– More generally (FSK), Y = h X + N

• Flat-fading: All FSK tones multiplied by the same fading coefficient h.
Modulation implementation in CML
– The complex signal set S is created with the CreateConstellation

function.
– Modulation is performed using the Modulate function.

2/24/2008
CML Overview

22/84

Log-likelihood of Received Symbols
Let p(xk|y) denote the probability that signal xk ∈S was
transmitted given that y was received.
Let f(xk|y) = Κ p(xk|y), where Κ is any multiplicative term
that is constant for all xk.

When all symbols are equally likely, f(xk|y) ∝ f(y|xk)
For each signal in S, the receiver computes f(y|xk)
– This function depends on the modulation, channel, and receiver.
– Implemented by the Demod2D and DemodFSK functions, which

actually computes log f(y|xk).

Assuming that all symbols are equally likely, the most
likely symbol xk is found by making a hard decision on
f(y|xk) or log f(y|xk).

2/24/2008
CML Overview

23/84

Example: QAM over AWGN.
Let y = x + n, where n is complex i.i.d. N(0,N0/2) and the
average energy per symbol is E[|x|2] = Es

o

ks

k
k

k
k

k
k

N
xyE

xy
xyf

xy
xyf

xy
xyp

2

2

2

2

2

2

2

2

2
)(log

2
exp)(

2
exp

2
1)(

−−
=

−−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −−

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −−

=

σ

σ

σπσ

2/24/2008
CML Overview

24/84

Converting symbol liklihoods
to bit LLR

The symbol likelihoods must be transformed into bit
log-likelihood ratios (LLRs):

– where represents the set of symbols whose nth bit is a 1.
– and is the set of symbols whose nth bit is a 0.

Modulator:
Pick Xk ∈ S

Xk

Nk

Receiver:
Compute
log f(Y|Xk)for
every Xk ∈ S

Y Demapper:
Compute λn
from set of
log f(Y|Xk)

log
f(Y|Xk) λndata

to
decoder

()

()∑

∑

∈

∈=
=
=

=

)0(

)1(

|

|
log

]0[
]1[log

nk

nk

SX
k

SX
k

n

n
n XYf

XYf

dP
dPλ

)1(

nS
)0(

nS

000
001

011

010
110

111

101

100
)1(

3S

Demod2D function SoMAP function

2/24/2008
CML Overview

25/84

Log-domain Implementation

()

()

() ()

(){ } (){ }

(){ } (){ }k
SX

k
SX

k
SX

k
SX

SX
k

SX
k

SX
k

SX
k

n

XYfXYf

XYfXYf

XYfXYf

XYf

XYf

nknk

nknk

nknk

nk

nk

|logmax|logmax

|logmax*|logmax*

|log|log

|

|
log

)0()1(

)0()1(

)0()1(

)0(

)1(

∈∈

∈∈

∈∈

∈

∈

−≈

−=

−=

=

∑∑

∑

∑
λ

log-MAP
demod_type = 0

max-log-MAP
demod_type = 1

The max* function

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|y-x|

fc(|y-x|) ()[])exp1log)(zzfc −+=

[]
{ }()

()xyfyx

xyyx
yxyx

c −+=

−−++=

+=

),max(

exp1log),max(
)exp()exp(log),(max*

2/24/2008
CML Overview

27/84

FSK-Specific Parameters
sim_param(record).
– h = {scalar}

• The modulation index
• h=1 is orthogonal

– csi_flag = {integer scalar}
0 = coherent (only available when h=1)
1 = noncoherent w/ perfect amplitudes
2 = noncoherent without amplitude estimates

2/24/2008
CML Overview

28/84

Specifying the Channel
sim_param(record).
– channel = {‘AWGN’, ‘Rayleigh’, ‘block’}

• ‘Rayleigh’ is “fully-interleaved” Rayleigh fading
• ‘block’ is for coded simulation type only

– blocks_per_frame = {scalar integer}
• For block channel only.
• Number of independent blocks per frame.
• Block length is framesize/blocks_per_frame

– bicm = {integer scalar}
• 0 do not interleave bits prior to modulation
• 1 interleave bits prior to modulation (default)
• 2 interleave and perform iterative demodulation/decoding
• This option is irrelevant unless a channel code is used

2/24/2008
CML Overview

29/84

Exercises
Create and run the following simulations:
– BPSK in AWGN
– 64QAM with gray labeling in AWGN
– 64QAM with gray labeling in Rayleigh fading

Choices that need to be made?
– Framesize?
– Save_rate?
– Min_BER?
– Min_frame_errors?
– Demod_type?

Plot all the results on the same figure.

2/24/2008
CML Overview

30/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

31/84

Coded Systems:
Code Configuration

Only for sim_param(record).sim_type = ‘coded’
sim_param(record).code_configuration = {scalar int}
– 0 = Convolutional
– 1 = binary turbo code (PCCC)
– 2 = LDPC
– 3 = HSDPA turbo code
– 4 = UMTS turbo code with rate matching
– 5 = WiMAX duobinary tailbiting turbo code (CTC)
– 6 = DVB-RCS duobinary tailbiting turbo code

2/24/2008
CML Overview

32/84

Convolutional Codes
Only rate 1/n mother codes supported.
– Can puncture to higher rate.

Code is always terminated by a tail.
– Can puncture out the tail.

sim_param(record).
– g1 = {binary matrix}

• Example: (133,171) code from Proakis
– g1 = [1 0 1 1 0 1 1

1 1 1 1 0 0 1];
• Constraint length = number of columns
• Rate 1/n where n is number of rows.

– nsc_flag1 = {scalar integer}
• 0 for RSC
• 1 for NSC

Can handle cyclic block codes as a rate 1 terminated RSC code

2/24/2008
CML Overview

33/84

Convolutional Codes:
Decoding Algorithms

sim_param(record).decoder_type = {integer scalar}
negative value for Viterbi algorithm
0 = log-MAP (approximated linearly)
1 = max-log-MAP
2 = constant-log-MAP
3 and 4 other implementations of log-MAP

Decodes over entire trellis (no sliding window traceback)

2/24/2008
CML Overview

34/84

Punctured Convolutional Codes
sim_param(record).
– pun_pattern1 = {binary matrix}

• Puncturing pattern
• n rows
• arbitrary number of columns (depends on puncture period)
• 1 means keep bit, 0 puncture it.
• number greater than 1 is number of times to repeat bit.

– tail_pattern1 = {binary matrix}
• tail can have its own puncturing pattern.

2/24/2008
CML Overview

35/84

Turbo Codes
sim_param(record).
– Parameters for first constituent code

• g1
• nsc_flag1
• pun_pattern1
• tail_pattern1

– Parameters for second constituent code
• g2
• nsc_flag2
• pun_pattern2
• tail_pattern2

2/24/2008
CML Overview

36/84

Turbo Codes (cont’d)
sim_param(record).
– code_interleaver = {string}

• A string containing the command used to generate the interleaver.
• Examples include:

– “CreateUmtsInterleaver(5114)” % UMTS interleaver.
– “CreateLTEInterleaver(6144)” % LTS interleaver.
– “CreateCCSDSInterleaver(8920)” % CCSDS interleaver.
– “randperm(40)-1” % a random interleaver of length 40.
– Can replace above lengths with other valid lengths.

– decoder_type = {integer scalar}
• Same options as for convolutional codes (except no Viterbi allowed).

– max_iterations = {integer scalar}
• Number of decoder iterations.
• Decoder will automatically halt once codeword is correct.

– plot_iterations = {integer scalar}
• Which iterations to plot, in addition to max_iterations

2/24/2008
CML Overview

37/84

UMTS Rate Matching
sim_param(record)
– framesize = {integer scalar}

• number of data bits
– code_bits_per_frame = {integer scalar}

• number of code bits

When code_configuration = 4, automatically determines
rate matching parameters according to UMTS (25.212)

2/24/2008
CML Overview

38/84

HSDPA Specific Parameters
sim_param(record).
– N_IR = {integer scalar}

• Size of the virtual IR buffer
– X_set = {integer vector}

• Sequence of redundancy versions (one value per ARQ transmission)
– P = {integer scalar}

• Number of physical channels per turbo codeword
Examples from HSET-6 TS 25.101
– N_IR = 9600
– QPSK

• framesize = 6438
• X_set = [0 2 5 6]
• P = 5 (i.e. 10 physical channels used for 2 turbo codewords)

– 16-QAM
• framesze = 9377
• X_set = [6 2 1 5]
• P = 4 (i.e. 8 physical channels used for 2 turbo codewords)

2/24/2008
CML Overview

39/84

LDPC
sim_parameters(record).
– parity_check_matrix = {string}

• A string used to generate the parity check matrix
– decoder_type

• 0 Sum-product (default)
• 1 Min-sum
• 2 Approximate-min-star

– max_iterations
• Number of decoder iterations.
• Decoder will automatically halt once codeword is correct.

– plot_iterations
• Which iterations to plot, in addition to max_iterations

2/24/2008
CML Overview

40/84

Block Fading
For coded simulations, block fading is supported.
Sim_param(record).channel = ‘block’
Sim_param(record).blocks_per_frame
– The number of independent blocks per frame

Example, HSDPA with independent retransmissions
– blocks_per_frame = length(X_set);

2/24/2008
CML Overview

41/84

Exercises
Simulate
– A convolutional code with g=(7,5) over AWGN with BPSK
– The same convolutional code punctured to rate 3/4.
– The UMTS turbo code with 16-QAM

• Unpunctured w/ 640 input bits
• Punctured to force the rate to be 1/2.
• Compare log-MAP and max-log-MAP

– HSDPA
• HSET-6
• Quasi-static block fading

2/24/2008
CML Overview

42/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

43/84

Noisy Channel Coding Theorem
(Shannon 1948)

Consider a memoryless channel with input X and output Y

– The channel is completely characterized by p(x,y)
The capacity C of the channel is

– where I(X,Y) is the (average) mutual information between X and Y.
The channel capacity is an upper bound on information rate r.
– There exists a code of rate r < C that achieves reliable communications.
– “Reliable” means an arbitrarily small error probability.

{ }
⎭
⎬
⎫

⎩
⎨
⎧

== ∫∫ dxdy
ypxp

yxpyxpYXIC
xpxp)()(

),(log),(max);(max
)()(

Source
p(x)

Channel
p(y|x)

X Y
Receiver

2/24/2008
CML Overview

44/84

Capacity of the AWGN Channel
with Unconstrained Input

Consider the one-dimensional AWGN channel

The capacity is

The X that attains capacity is Gaussian distributed.
– Strictly speaking, Gaussian X is not practical.

{ } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== 12log

2
1);(max 2)(

o

s

xp N
EYXIC

The input X is drawn
from any distribution
with average energy
E[X2] = Es

X

N~zero-mean white Gaussian
with energy E[N2]= N0/2

Y = X+N

bits per channel use

2/24/2008
CML Overview

45/84

Capacity of the AWGN Channel
with a Modulation-Constrained Input

Suppose X is drawn with equal probability from the finite
set S = {X1,X2, …, XM}

– where f(Y|Xk) = κ p(Y|Xk) for any κ common to all Xk

Since p(x) is now fixed

– i.e. calculating capacity boils down to calculating mutual info.

{ });();(max
)(

YXIYXIC
xp

==

Modulator:
Pick Xk at random from
S= {X1,X2, …, XM}

Xk

Nk

ML Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y

2/24/2008
CML Overview

46/84

Entropy and Conditional Entropy

Mutual information can be expressed as:

Where the entropy of X is

And the conditional entropy of X given Y is

∫== dxxhxpXhEXH)()()]([)(

)(log
)(

1log)(xp
xp

xh −==

dxdyyxhyxpYXhEYXH)|(),()]|([)|(∫∫==

)|(log)|(yxpyxh −=

where

where

)|()();(YXHXHYXI −=

self-information

2/24/2008
CML Overview

47/84

Calculating Modulation-Constrained
Capacity

To calculate:

We first need to compute H(X)

Next, we need to compute H(X|Y)=E[h(X|Y)]
– This is the “hard” part.
– In some cases, it can be done through numerical integration.
– Instead, let’s use Monte Carlo simulation to compute it.

)|()();(YXHXHYXI −=

M
ME

Xp
E

XhEXH

log
][log

)(
1log

)]([)(

=
=

⎥
⎦

⎤
⎢
⎣

⎡
=

=

M
Xp 1)(=

2/24/2008
CML Overview

48/84

Step 1: Obtain p(x|y) from f(y|x)

Modulator:
Pick Xk at random
from S

Xk

Nk

Noise Generator

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y

∑
∈

=
Sx

yxp
'

1)|'(

∑∑∑
∈

∈
∈

===

Sx
Sx

Sx

xyf
xyf

yp
xpxyp

yp
xpxyp

yxp
yxpyxp

'
'

'

)'|(
)|(

)(
)'()'|(

)(
)()|(

)|'(
)|()|(

Since

We can get p(x|y) from

2/24/2008
CML Overview

49/84

Step 2: Calculate h(x|y)

Modulator:
Pick Xk at random
from S

Xk

Nk

Noise Generator

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y

Given a value of x and y (from the simulation) compute

Then compute
∑

∈

=

Sx
xyf

xyfyxp

'
)'|(

)|()|(

∑
∈

+−=−=
Sx

xyfxyfyxpyxh
'

)'|(log)|(log)|(log)|(

2/24/2008
CML Overview

50/84

Step 3: Calculating H(X|Y)

Modulator:
Pick Xk at random
from S

Xk

Nk

Noise Generator

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y

Since:

Because the simulation is ergodic, H(X|Y) can be found by taking the sample
mean:

where (X(n),Y(n)) is the nth realization of the random pair (X,Y).
– i.e. the result of the nth simulation trial.

dxdyyxhyxpYXhEYXH)|(),()]|([)|(∫∫==

∑
=

∞→
=

N

n

nn

N
YXh

N
YXH

1

)()()|(1lim)|(

2/24/2008
CML Overview

51/84

Example: BPSK

Suppose that S ={+1,-1} and N has variance N0/2Es

Then: 2)|(log xy
N
Exyf

o

s −−=

Modulator:
Pick Xk at random
from S ={+1,-1}

Xk

Nk

Noise Generator

Receiver:
Compute log f(Y|Xk)
for every Xk ∈ S

Y

BPSK Capacity as a Function of
Number of Simulation Trials

Eb/No = 0.2 dB

As N gets large, capacity
converges to C=0.5

10 1 10 2 10 3 10 4 10 5 10 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

trials

ca
pa

ci
ty

Unconstrained vs.
BPSK Constrained Capacity

0 1 2 3 4 5 6 7 8 9 10-1-2

0.5

1.0

Eb/No in dB

BPSK Capacity Bound

C
od

e
R

at
e

r

Sh
an

no
n

Ca
pa

cit
y

Bo
un

d

S
pe

ct
ra

l E
ffi

ci
en

cy

It is theoretically
possible to operate
in this region.

It is theoretically
impossible to operate
in this region.

Power Efficiency of Standard
Binary Channel Codes

Turbo Code
1993

Odenwalder
Convolutional
Codes 1976

0 1 2 3 4 5 6 7 8 9 10-1-2

0.5

1.0

Eb/No in dB

BPSK Capacity Bound

C
od

e
R

at
e

r

Sh
an

no
n

Ca
pa

cit
y

Bo
un

d

Uncoded
BPSK

IS-95
1991

510−=bP

S
pe

ct
ra

l E
ffi

ci
en

cy

arbitrarily low
BER:

LDPC Code
2001

Chung, Forney,
Richardson, Urbanke

-2 0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

Eb/No in dB

C
ap

ac
ity

 (b
its

 p
er

 s
ym

bo
l)

2-D
 U

nco
nst

rai
ned

 Capa
cit

y

256QAM

64QAM

16QAM

16PSK

8PSK

QPSK

Capacity of PSK and QAM in AWGN

BPSK

Capacity of Noncoherent Orthogonal FSK in AWGN
W. E. Stark, “Capacity and cutoff rate of noncoherent FSK
with nonselective Rician fading,” IEEE Trans. Commun., Nov. 1985.

M.C. Valenti and S. Cheng, “Iterative demodulation and decoding of turbo coded
M-ary noncoherent orthogonal modulation,” IEEE JSAC, 2005.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Rate R (symbol per channel use)

M
in

im
um

 E
b/

N
o

(in
 d

B
)

M=2

M=4

M=16

M=64

Noncoherent combining penalty

min Eb/No = 6.72 dB
at r=0.48

Capacity of Nonorthogonal CPFSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

(MSK) h

m
in

 E
b/

N
o

(in
 d

B
)

No BW Constraint

BW constraint: 2 Hz/bps

(orthogonal)

ST
h

S. Cheng, R. Iyer Sehshadri, M.C. Valenti, and D. Torrieri,
“The capacity of noncoherent continuous-phase frequency shift keying,”
in Proc. Conf. on Info. Sci. and Sys. (CISS), (Baltimore, MD), Mar. 2007.

for h= 1
min Eb/No = 6.72 dB

at r=0.48

Note that these curves are generated
using sim_type = ‘bwcapacity’

2/24/2008
CML Overview

58/84

BICM
(Caire 1998)

Coded modulation (CM) is required to attain the
aforementioned capacity.
– Channel coding and modulation handled jointly.
– Alphabets of code and modulation are matched.
– e.g. trellis coded modulation (Ungerboeck); coset codes (Forney)

Most off-the-shelf capacity approaching codes are binary.
A pragmatic system would use a binary code followed by
a bitwise interleaver and an M-ary modulator.
– Bit Interleaved Coded Modulation (BICM).

Binary
Encoder

Bitwise
Interleaver

Binary
to M-ary
mapping

lu nc' nc kx

2/24/2008
CML Overview

59/84

BICM Receiver

The symbol likelihoods must be transformed into bit
log-likelihood ratios (LLRs):

– where represents the set of symbols whose nth bit is a 1.
– and is the set of symbols whose nth bit is a 0.

Modulator:
Pick Xk ∈ S
from (c1 … c μ)

Xk

Nk

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y Demapper:
Compute λn
from set of f(Y|Xk)

f(Y|Xk) λn
cn

from
encoder

to
decoder

()

()∑

∑

∈

∈=

)0(

)1(

|

|
log

nk

nk

SX
k

SX
k

n XYf

XYf
λ

)1(

nS
)0(

nS

000
001

011

010
110

111

101

100
)1(

3S

2/24/2008
CML Overview

60/84

BICM Capacity

Can be viewed as μ=log2M binary parallel channels,
each with capacity

Capacity over parallel channels adds:

As with the CM case, Monte Carlo integration may be used.

Modulator:
Pick Xk ∈ S
from (c1 … c μ)

Xk

Nk

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y Demapper:
Compute λn
from set of f(Y|Xk)

f(Y|Xk) λn
cn

),(nnn cIC λ=

∑
=

=
μ

1n
nCC

CM vs. BICM Capacity for 16QAM

-20 -15 -10 -5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Es/No in dB

C
ap

ac
ity

CM
BICM w/
SP labeling

BICM w/
gray labeling

2/24/2008
CML Overview

62/84

BICM-ID
(Li & Ritcey 1997)

A SISO decoder can provide side information to the
demapper in the form of a priori symbol likelihoods.
– BICM with Iterative Detection The demapper’s output then

becomes

Modulator:
Pick Xk ∈ S
from (c1 … c μ)

Xk

Nk

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y Demapper:
Compute λn
from set of f(Y|Xk)
and p(Xk)

f(Y|Xk) λn
cn

from
encoder

to decoder

p(Xk) from decoder

()

()∑

∑

∈

∈=

)0(

)1(

)(|

)(|
log

nk

nk

SX
kk

k
SX

k

n XpXYf

XpXYf
λ

2/24/2008
CML Overview

63/84

Capacity Simulations in CML
sim_param(record).sim_type = ‘capacity’
Exact same parameters as for uncoded simulations
– SNR
– SNR_type = ‘Es/No in dB’
– framesize
– modulation
– mod_order
– channel
– bicm
– demod_type
– max_trials

2/24/2008
CML Overview

64/84

Exercises
Determine the capacity for
– BPSK in AWGN
– 64QAM with gray labeling in AWGN
– 64QAM with gray labeling in Rayleigh fading

Setup BICM-ID for
– 16-QAM with SP mapping in AWGN and (7,5) CC.

2/24/2008
CML Overview

65/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

66/84

Ergodicity
vs. Block Fading

Up until now, we have assumed that the channel is ergodic.
– The observation window is large enough that the time-average converges

to the statistical average.
Often, the system might be nonergodic.
Example: Block fading

b=1
γ1

b=2
γ2

b=3
γ3

b=4
γ4

b=5
γ5

The codeword is broken into B equal length blocks
The SNR changes randomly from block-to-block
The channel is conditionally Gaussian
The instantaneous Es/No for block b is γb

2/24/2008
CML Overview

67/84

Accumulating Mutual Information
The SNR γb of block b is a random.
Therefore, the mutual information Ib for the block is also random.
– With a complex Gaussian input, Ib= log(1+γb)
– Otherwise the modulation constrained capacity can be used for Ib

b=1
I1 = log(1+γ1)

b=2
I2

b=3
I3

b=4
I4

b=5
I5

The mutual information of each block is Ib= log(1+γb)
Blocks are conditionally Gaussian
The entire codeword’s mutual info is the sum of the blocks’

(Code combining)∑
=

=
B

b
b

B II
1

1

2/24/2008
CML Overview

68/84

Information Outage
An information outage occurs after B blocks if

– where R≤log2M is the rate of the coded modulation

An outage implies that no code can be reliable for the
particular channel instantiation
The information outage probability is

– This is a practical bound on FER for the actual system.

RI B <1

[]RIPP B <= 10

0 10 20 30 40 50
10

-6

10-5

10
-4

10
-3

10
-2

10-1

100

Es/No in dB

In
fo

rm
at

io
n

O
ut

ag
e

P
ro

ba
bi

lit
y

Modulation Constrained Input
Unconstrained Gaussian Input

B=1

B=2B=3B=4B=10

16-QAM
R=2
Rayleigh Block Fading

Notice the loss of diversity
(see Guillén i Fàbrebas and Caire 2006)

as B →∞,
the curve
becomes
vertical at
the ergodic
Rayleigh fading
capacity bound

2/24/2008
CML Overview

70/84

Outage Simulation Type
sim_param(record).
– blocks_per_frame

• Assumes block fading channel
– mod_order

• 0 for Gaussian input case
– rate

• Code rate.
• Outage whenever MI < rate

– combining_type = {‘code’, ‘diversity’}
– input_filename

• Required if mod_order > 0
• Contains results of a capacity simulation.
• Used for a table look-up operation

Finite Length Codeword Effects

Outage Region

10
1

10
2

10
3

10
4

10
5

10
6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Codeword length

ca
pa

ci
ty

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
10

-6

10
-5

10-4

10-3

10-2

10-1

10
0

Eb/No in dB

FE
R

information
outage probability
for (1092,360)
code with BPSK
in AWGN

FER of the (1092,360)
UMTS turbo code
with BPSK
in AWGN

2/24/2008
CML Overview

73/84

Bloutage Simulation Type
Set up like an uncoded simulation
– framesize
– specify the modulation

• Set mod_order = 0 for unconstrained Gaussian input
– specify the channel (AWGN, Rayleigh, etc.)

Also requires the rate
Saves FER, not BER

2/24/2008
CML Overview

74/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

75/84

Main Program Flow
CmlSimulate
– ReadScenario

• Runs SingleRead for each record
• Performs sanity check on sim_param structure
• Initializes or restores the sim_state structure

– For each record~
• SingleSimulate if a simulation
• Otherwise, runs one of the analysis functions:

– CalculateThroughput
– CalculateMinSNR
– CalculateMinSNRvsB

2/24/2008
CML Overview

76/84

SingleSimulate
Seeds random number generator
Branches into
– SimulateMod

• For uncoded, coded, and bloutage
– SimulateUGI

• For a blocklength-constrained outage simulation with unconstrained
Gaussian input.

– SimulateCapacity
• For capacity

– SimulateOutage
• For outage

2/24/2008
CML Overview

77/84

SimulateMod

Main subfunctions (coded/uncoded cases:
– CmlEncode
– CmlChannel
– CmlDecode

For bloutage, replace CmlDecode with
– Somap
– capacity

2/24/2008
CML Overview

78/84

SimulateCapacity
Operates like SimulateMod with sim_type = ‘bloutage’
– However, instead of comparing MI of each codeword against the

rate, keeps a running average of MI.

2/24/2008
CML Overview

79/84

SimulateOutage
Randomly generates SNR for each block
Performs table lookup to get MI from SNR
Compares MI against threshold

2/24/2008
CML Overview

80/84

Outline
1. CML overview

• What is it? How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ

2/24/2008
CML Overview

81/84

Hybrid-ARQ
(Caire and Tunnineti 2001)

Once the codeword can be decoded with high reliability.
Therefore, why continue to transmit any more blocks?
With hybrid-ARQ, the idea is to request retransmissions until
– With hybrid-ARQ, outages can be avoided.
– The issue then becomes one of latency and throughput.

b=1
I1 = log(1+γ1)

b=2
I2

b=3
I3

b=4
I4

b=5
I5

RI B >1

RI B >1

R

NACK NACK ACK {Wasted transmissions}

2/24/2008
CML Overview

82/84

Latency and Throughput
of Hybrid-ARQ

With hybrid-ARQ B is now a random variable.
– The average latency is proportional to E[B].
– The average throughput is inversely proportional to E[B].

Often, there is a practical upper limit on B
– Rateless coding (e.g. Raptor codes) can allow Bmax →∞

An example
– HSDPA: High-speed downlink packet access
– 16-QAM and QPSK modulation
– UMTS turbo code
– HSET-1/2/3 from TS 25.101
– Bmax = 4

-10 -5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Es/No in dB

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Unconstrained Gaussian Input
Modulation Constrained Input
Simulated HSDPA Performance

16-QAM QPSK

R = 3202/2400 for QPSK
R = 4664/1920 for QAM
Bmax = 4

T. Ghanim and M.C. Valenti, “The throughput of
hybrid-ARQ in block fading under modulation constraints,”
in Proc. Conf. on Info. Sci. and Sys. (CISS), Mar. 2006.

2/24/2008
CML Overview

84/84

Conclusions: Design Flow with CML

When designing a system, first determine its capacity.
– Only requires a slight modification of the modulation simulation.
– Does not require the code to be simulated.
– Allows for optimization with respect to free parameters.

After optimizing with respect to capacity, design the code.
– BICM with a good off-the-shelf code.
– Optimize code with respect to the EXIT curve of the modulation.

Information outage analysis can be used to characterize:
– Performance in slow fading channels.
– Delay and throughput of hybrid-ARQ retransmission protocols.
– Finite codeword lengths.

