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Outline
1. CML overview

• What is it?  How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML 
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ
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What is CML?
CML is an open source toolbox for simulating capacity 
approaching codes in Matlab. 
Available for free at the Iterative Solutions website:
– www.iterativesolutions.com

Runs in matlab, but uses c-mex for efficiency.
First release was in Oct. 2005.
– Used code that has been developed starting in 1996.
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Features
Simulation of BICM (bit interleaved coded modulation)

• Turbo, LDPC, or convolutional codes.
• PSK, QAM, FSK modulation.
• BICM-ID: Iterative demodulation and decoding.

Generation of ergodic capacity curves 
– BICM/CM constrained modulation.

Information outage probability 
– Block fading channels.
– Blocklength-constrained channels (AWGN or fading)

Calculation of throughput of hybrid-ARQ.
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Supported Standards
Binary turbo codes: 
– UMTS/3GPP, including HSDPA and LTE.
– cdma2000/3GPP2.
– CCSDS.

Duobinary turbo codes: 
– DVB-RCS.
– WiMAX IEEE 802.16.

LDPC codes: 
– DVB-S2.
– Mobile WiMAX IEEE 802.16e.
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Simulation Data is Valuable
CML saves simulation state frequently
– parameter called “save_rate” can be tuned to desired value.

CML can be stopped at any time.
– Intentionally: Hit CTRL-C within matlab.
– Unintentionally: Power failure, reboot, etc.

CML automatically resumes simulation
– If a simulation is run again, it will pickup where it left off.
– Can reset simulation by setting “reset=1”.
– SNR points can be added or deleted prior to restarting.

Simulations can be made more confident by requesting 
additional trials prior to restarting.
– The new results will be added to the old ones.
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Compiled Mode
A flag called “compiled_mode” can be used to run CML 
independently of matlab.
CML must first be compiled using the matlab compiler.
Advantages:
– Can run on machines without matlab.
– Can run on a grid computer.
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WebCML
WebCML is a new initiative sponsored by NASA and NSF.
Idea is to upload simulation parameters to a website and 
hit a “simulate” button.
– Simulation begins on the webserver.
– The webserver will divide the simulation into multiple jobs which 

are sent to a grid computer.
Results can be retrieved while simulation is running and 
once it has completed.
The grid is comprised of ordinary desktop computers.
– The grid compute engine is a screen saver.

• Kicks in only when computer is idle.
– Users of WebCML are encouraged to donate their organizations 

computers to the grid.
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Getting Started with CML
Download
– www.iterativesolutions.com/download.htm
– Unzip into a directory

• Root directory will be ./cml

About simulation databases
– A large database of previous simulation results can be 

downloaded.
– Unzip each database and place each extracted directory into the 

./cml/output directory

About c-mex files.
– C-mex files are compiled for PC computers.
– For unix and mac computers, must compile.

• Within matlab, cd to ./cml/source and type “make”.
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Starting and Interacting with CML
Launch matlab
Cd to the ./cml directory
Type “CmlStartup”
– This sets up paths and determines the version of matlab.

To run CML, only two functions are needed:
– CmlSimulate

• Runs one or more simulations.
• Simulation parameters are stored in text files.

– Currently .m scripts, to be changed to XML files soon.
• The argument tells CML which simulation(s) to run.

– CmlPlot
• Plots the results of one or more simulations.
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Scenario Files 
and the SimParam Structure

The parameters associated with a set of simulations is 
stored in a scenario file.
– Located in one of two directories

• ./cml/scenarios for publicly available scenarios
• ./cml/localscenarios for personal user scenarios
• Other directories could be used if they are on the matlab path.

– .m extension.
Exercise
– Edit the example scenario file: UncodedScenarios.m

The main content of the scenario file is a structure called 
sim_param
– Sim_param is an array.
– Each element of the array is called a record and corresponds to a 

single distinct simulation.



2/24/2008
CML Overview

12/84

Common Parameters
List of all parameters can be found in:
– ./cml/mat/DefineStructures.m
– ./cml/documentation/readme.pdf

Default values are in the DefineStructures.m file
Some parameters can be changed between runs, others 
cannot.
– sim_param_changeable
– sim_param_unchangeable
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Dissecting the SimParam Structure:
The simulation type

sim_param(record).sim_type = 
– ‘uncoded’

• BER and SER of uncoded modulation
– ‘coded’

• BER and FER of coded modulation
– ‘capacity’

• The Shannon capacity under modulation constraints.
– ‘outage’

• The information outage probability of block fading channels
• Assumes codewords are infinite in length

– ‘bloutage’
• Information outage probability in AWGN or ergodic/block fading channels
• Takes into account lenth of the code.

– ‘throughput’
• By using FER curves, determines throughput of hybrid ARQ
• This is an example of an analysis function … no simulation involved.
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Lesser Used Simulation Types
sim_param(record).sim_type = 
– ‘bwcapacity’

• Shannon capacity of CPFSK under bandwidth constraints.
– ‘minSNRvsB’ 

• Capacity limit of CPFSK as a function of bandwidth
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Parameters Common to All Simulations

Sim_param(record).
– comment = {string}

• Text, can be anything.
– legend = {string}

• What to put in figure caption
– linetype = {string} 

• Color, type, and marker of line.  Uses syntax from matlab “plot”.
– filename = {string}

• Where to save the results of the simulation
• Once filename is changed, any parameter can be changed.

– reset = {0,1} with default of 0
• Indication to resume “0” or restart “1” simulation when run again.
• If reset = 1, any parameter may be changed.
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Specifying the Simulation
sim_param(record).
– SNR = {vector}

• Vector containing SNR points in dB
• Can add or remove SNR points between runs

– SNR_type = {‘Eb/No in dB’ or ‘Es/No in dB’}
• For some simulation types, only one option is supported.
• E.g. for capacity simulations, it must be Es/No

– save_rate = {scalar integer}
• An integer specifying how often the state of the simulation is saved
• Number of trials between saves.
• Simulation echoes a period ‘.’ every time it saves.
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Specifying the Simulation (cont’d)
sim_param(record).
– max_trials = {vector}

• A vector of integers, one for each SNR point
• Tells simulation maximum number of trials to run per point.

– max_frame_errors = {vector}
• Also a vector of integers, one for each SNR point.
• Tells simulation maximum number of frame errors to log per point.
• Simulation echoes a ‘x’ every time it logs a frame error.

– minBER = {scalar}
• Simulation halts once this BER is reached

– minFER = {scalar}
• Simulation halts once this FER is reached.
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Specifying Modulation
sim_param(record).
– modulation = {string}

• Specifies the modulation type
• May be ‘BPSK’, ‘QPSK’, ‘QAM’, ‘PSK’, ‘APSK’, ‘HEX’, or ‘FSK’
• ‘HSDPA’ used to indicate QPSK and QAM used in HSDPA.
• All but FSK are 2 dimensional modulations

– Uses a complex scalar value for each symbol.
• Default is ‘BPSK’
• New (version 1.9 and above): Can also be set to “custom”. 

– mod_order = {integer scalar}
• Number of points in the constellation.
• Power of 2.
• Default is 2.
• In some cases, M=0 is used to indicate an unconstrained Gaussian input.

– S_matrix = {complex vector}
• Only used for “custom” modulation type.
• A vector of length “mod_order” containing the values of the symbols in the 

signal set S.
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Specifying Modulation
sim_param(record).
– mapping = {integer vector}

• A vector of length M specifying how data bits are mapped to symbols.
• Vector contains the integers 0 through M-1 exactly once.
• ith element of vector is the set of bits associated with the ith symbol.
• Alternatively, can be a string describing the modulation, like ‘gray’ or ‘sp’
• Default is ‘gray’

– framesize = {integer scalar}
• The number of symbols per Monte Carlo trial
• For coded systems, this is number of bits per codeword

– demod_type = {integer scalar}
• A flag indicating how to implement the demodulator

0 = log-MAP (approximated linearly)
1 = max-log-MAP
2 = constant-log-MAP
3 and 4 other implementations of log-MAP

• Max-log-MAP is fastest.
• Does not effect the uncoded error rate.

– However, effects coded performance
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M-ary Complex Modulation
μ = log2 M bits are mapped to the symbol xk, which is chosen from the 
set S = {x1, x2, …, xM}
– The symbol is multidimensional.
– 2-D Examples: QPSK, M-PSK, QAM, APSK, HEX

• These 2-D signals take on complex values.
– M-D Example: FSK

• FSK signals are represented by the M-dimensional complex vector X.
The signal y = hxk + n is received
– h is a complex fading coefficient (scalar valued).
– n is complex-valued AWGN noise sample
– More generally (FSK), Y = h X + N

• Flat-fading: All FSK tones multiplied by the same fading coefficient h.
Modulation implementation in CML
– The complex signal set S is created with the CreateConstellation

function.
– Modulation is performed using the Modulate function.
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Log-likelihood of Received Symbols
Let p(xk|y) denote the probability that signal xk ∈S was 
transmitted given that y was received.
Let f(xk|y) = Κ p(xk|y), where Κ is any multiplicative term 
that is constant for all xk.

When all symbols are equally likely, f(xk|y) ∝ f(y|xk) 
For each signal in S, the receiver computes f(y|xk)
– This function depends on the modulation, channel, and receiver.
– Implemented by the Demod2D and DemodFSK functions, which 

actually computes  log f(y|xk). 

Assuming that all symbols are equally likely, the most 
likely symbol xk is found by making a hard decision on 
f(y|xk) or log f(y|xk).
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Example: QAM over AWGN.
Let y = x + n, where n is complex i.i.d. N(0,N0/2 ) and the 
average energy per symbol is E[|x|2] = Es
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Converting symbol liklihoods
to bit LLR

The symbol likelihoods must be transformed into bit       
log-likelihood ratios (LLRs):

– where       represents the set of symbols whose nth bit is a 1.
– and       is the set of symbols whose nth bit is a 0.

Modulator:
Pick Xk ∈ S

Xk

Nk

Receiver:
Compute 
log f(Y|Xk)for
every Xk ∈ S

Y Demapper:
Compute  λn
from set of 
log f(Y|Xk)

log
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Log-domain Implementation
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FSK-Specific Parameters
sim_param(record).
– h = {scalar}

• The modulation index
• h=1 is orthogonal

– csi_flag = {integer scalar}
0 = coherent (only available when h=1)
1 = noncoherent w/ perfect amplitudes
2 = noncoherent without amplitude estimates
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Specifying the Channel
sim_param(record).
– channel = {‘AWGN’, ‘Rayleigh’, ‘block’}

• ‘Rayleigh’ is “fully-interleaved” Rayleigh fading
• ‘block’ is for coded simulation type only

– blocks_per_frame = {scalar integer}
• For block channel only.
• Number of independent blocks per frame.
• Block length is framesize/blocks_per_frame

– bicm = {integer scalar}
• 0 do not interleave bits prior to modulation
• 1 interleave bits prior to modulation (default)
• 2 interleave and perform iterative demodulation/decoding
• This option is irrelevant unless a channel code is used



2/24/2008
CML Overview

29/84

Exercises
Create and run the following simulations:
– BPSK in AWGN
– 64QAM with gray labeling in AWGN
– 64QAM with gray labeling in Rayleigh fading

Choices that need to be made?
– Framesize?
– Save_rate?
– Min_BER?
– Min_frame_errors?
– Demod_type?

Plot all the results on the same figure.
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4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
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• Determine the outage probability of finite-length codes
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7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ
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Coded Systems:
Code Configuration

Only for sim_param(record).sim_type = ‘coded’
sim_param(record).code_configuration = {scalar int}
– 0 = Convolutional
– 1 = binary turbo code (PCCC)
– 2 = LDPC
– 3 = HSDPA turbo code
– 4 = UMTS turbo code with rate matching
– 5 = WiMAX duobinary tailbiting turbo code (CTC)
– 6 = DVB-RCS duobinary tailbiting turbo code 



2/24/2008
CML Overview

32/84

Convolutional Codes
Only rate 1/n mother codes supported.
– Can puncture to higher rate.

Code is always terminated by a tail.
– Can puncture out the tail.

sim_param(record).
– g1 = {binary matrix}

• Example: (133,171) code from Proakis
– g1 = [1 0 1 1 0 1 1

1 1 1 1 0 0 1];
• Constraint length = number of columns
• Rate 1/n where n is number of rows.

– nsc_flag1 = {scalar integer}
• 0 for RSC
• 1 for NSC

Can handle cyclic block codes as a rate 1 terminated RSC code
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Convolutional Codes: 
Decoding Algorithms

sim_param(record).decoder_type = {integer scalar}
negative value for Viterbi algorithm
0 = log-MAP (approximated linearly)
1 = max-log-MAP
2 = constant-log-MAP
3 and 4 other implementations of log-MAP

Decodes over entire trellis (no sliding window traceback)
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Punctured Convolutional Codes
sim_param(record).
– pun_pattern1 = {binary matrix}

• Puncturing pattern
• n rows
• arbitrary number of columns (depends on puncture period)
• 1 means keep bit, 0 puncture it.
• number greater than 1 is number of times to repeat bit.

– tail_pattern1 = {binary matrix}
• tail can have its own puncturing pattern.
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Turbo Codes
sim_param(record).
– Parameters for first constituent code

• g1
• nsc_flag1
• pun_pattern1
• tail_pattern1

– Parameters for second constituent code
• g2
• nsc_flag2
• pun_pattern2
• tail_pattern2
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Turbo Codes (cont’d)
sim_param(record).
– code_interleaver = {string}

• A string containing the command used to generate the interleaver.
• Examples include:

– “CreateUmtsInterleaver(5114)” % UMTS interleaver.
– “CreateLTEInterleaver(6144)” % LTS interleaver.
– “CreateCCSDSInterleaver(8920)” % CCSDS interleaver.
– “randperm(40)-1” % a random interleaver of length 40.
– Can replace above lengths with other valid lengths.

– decoder_type = {integer scalar} 
• Same options as for convolutional codes (except no Viterbi allowed).

– max_iterations = {integer scalar}
• Number of decoder iterations.
• Decoder will automatically halt once codeword is correct.

– plot_iterations = {integer scalar}
• Which iterations to plot, in addition to max_iterations
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UMTS Rate Matching
sim_param(record)
– framesize = {integer scalar}

• number of data bits
– code_bits_per_frame = {integer scalar}

• number of code bits

When code_configuration = 4, automatically determines 
rate matching parameters according to UMTS (25.212)
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HSDPA Specific Parameters
sim_param(record).
– N_IR = {integer scalar}

• Size of the virtual IR buffer
– X_set = {integer vector}

• Sequence of redundancy versions (one value per ARQ transmission)
– P = {integer scalar}

• Number of physical channels per turbo codeword
Examples from HSET-6 TS 25.101
– N_IR = 9600 
– QPSK

• framesize = 6438
• X_set = [0 2 5 6]
• P = 5 (i.e. 10 physical channels used for 2 turbo codewords)  

– 16-QAM
• framesze = 9377
• X_set = [6 2 1 5]
• P = 4 (i.e. 8 physical channels used for 2 turbo codewords)
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LDPC
sim_parameters(record).
– parity_check_matrix = {string}

• A string used to generate the parity check matrix
– decoder_type

• 0 Sum-product (default)
• 1 Min-sum 
• 2 Approximate-min-star

– max_iterations
• Number of decoder iterations.
• Decoder will automatically halt once codeword is correct.

– plot_iterations
• Which iterations to plot, in addition to max_iterations
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Block Fading
For coded simulations, block fading is supported.
Sim_param(record).channel = ‘block’
Sim_param(record).blocks_per_frame
– The number of independent blocks per frame

Example, HSDPA with independent retransmissions
– blocks_per_frame = length(X_set );
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Exercises
Simulate
– A convolutional code with g=(7,5) over AWGN with BPSK
– The same convolutional code punctured to rate 3/4.
– The UMTS turbo code with 16-QAM

• Unpunctured w/ 640 input bits
• Punctured to force the rate to be 1/2.
• Compare log-MAP and max-log-MAP

– HSDPA
• HSET-6
• Quasi-static block fading
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Noisy Channel Coding Theorem
(Shannon 1948)

Consider a memoryless channel with input X and output Y

– The channel is completely characterized by p(x,y)
The capacity C of the channel is

– where I(X,Y) is the (average) mutual information between X and Y. 
The channel capacity is an upper bound on information rate r.
– There exists a code of rate r < C that achieves reliable communications.
– “Reliable” means an arbitrarily small error probability.
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Capacity of the AWGN Channel 
with Unconstrained Input

Consider the one-dimensional AWGN channel 

The capacity is

The X that attains capacity is Gaussian distributed.
– Strictly speaking, Gaussian X is not practical.
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Capacity of the AWGN Channel 
with a Modulation-Constrained Input

Suppose X is drawn with equal probability from the finite 
set S = {X1,X2, …, XM}

– where  f(Y|Xk) = κ p(Y|Xk) for any κ common to all Xk

Since p(x) is now fixed

– i.e. calculating capacity boils down to calculating mutual info.
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Modulator:
Pick Xk at random from 
S= {X1,X2, …, XM}

Xk

Nk

ML Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y
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Entropy and Conditional Entropy 

Mutual information can be expressed as:

Where the entropy of X is

And the conditional entropy of X given Y is
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Calculating Modulation-Constrained 
Capacity

To calculate: 

We first need to compute H(X)

Next, we need to compute H(X|Y)=E[h(X|Y)]
– This is the “hard” part.
– In some cases, it can be done through numerical integration.
– Instead, let’s use Monte Carlo simulation to compute it.
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Step 1: Obtain p(x|y) from f(y|x)

Modulator:
Pick Xk at random
from S

Xk

Nk

Noise Generator

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y
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Step 2: Calculate h(x|y)

Modulator:
Pick Xk at random
from S

Xk

Nk

Noise Generator

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y

Given a value of x and y (from the simulation) compute

Then compute
∑

∈

=

Sx
xyf

xyfyxp

'
)'|(

)|()|(

∑
∈

+−=−=
Sx

xyfxyfyxpyxh
'

)'|(log)|(log)|(log)|(
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Step 3: Calculating H(X|Y)

Modulator:
Pick Xk at random
from S

Xk

Nk

Noise Generator

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y

Since:

Because the simulation is ergodic, H(X|Y) can be found by taking the sample 
mean:

where (X(n),Y(n)) is the nth realization of the random pair (X,Y).
– i.e. the result of the nth simulation trial.

dxdyyxhyxpYXhEYXH )|(),()]|([)|( ∫∫==

∑
=

∞→
=

N

n

nn

N
YXh

N
YXH

1
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Example: BPSK

Suppose that S ={+1,-1} and N has variance N0/2Es

Then: 2)|(log xy
N
Exyf

o

s −−=

Modulator:
Pick Xk at random
from S ={+1,-1} 

Xk

Nk

Noise Generator

Receiver:
Compute log f(Y|Xk)
for every Xk ∈ S

Y



BPSK Capacity as a Function of 
Number of Simulation Trials

Eb/No = 0.2 dB

As N gets large, capacity 
converges to C=0.5
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Capacity of Noncoherent Orthogonal FSK in AWGN
W. E. Stark, “Capacity and cutoff rate of noncoherent FSK
with nonselective Rician fading,” IEEE Trans. Commun., Nov. 1985.

M.C. Valenti and S. Cheng, “Iterative demodulation and decoding of turbo coded 
M-ary noncoherent orthogonal modulation,” IEEE JSAC, 2005.
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Capacity of Nonorthogonal CPFSK
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S. Cheng, R. Iyer Sehshadri, M.C. Valenti, and D. Torrieri, 
“The capacity of noncoherent continuous-phase frequency shift keying,”  
in Proc. Conf. on Info. Sci. and Sys. (CISS), (Baltimore, MD), Mar. 2007. 

for h= 1
min Eb/No = 6.72 dB

at r=0.48

Note that these curves are generated
using sim_type = ‘bwcapacity’



2/24/2008
CML Overview

58/84

BICM
(Caire 1998)

Coded modulation (CM) is required to attain the 
aforementioned capacity.
– Channel coding and modulation handled jointly.
– Alphabets of code and modulation are matched.
– e.g. trellis coded modulation (Ungerboeck); coset codes (Forney)

Most off-the-shelf capacity approaching codes are binary.
A pragmatic system would use a binary code followed by 
a bitwise interleaver and an M-ary modulator.
– Bit Interleaved Coded Modulation (BICM).

Binary
Encoder

Bitwise
Interleaver

Binary
to M-ary
mapping

lu nc' nc kx
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BICM Receiver

The symbol likelihoods must be transformed into bit       
log-likelihood ratios (LLRs):

– where       represents the set of symbols whose nth bit is a 1.
– and       is the set of symbols whose nth bit is a 0.

Modulator:
Pick Xk ∈ S
from (c1 … c μ)

Xk

Nk

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y Demapper:
Compute  λn
from set of f(Y|Xk)

f(Y|Xk)  λn
cn

from
encoder

to
decoder
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BICM Capacity

Can be viewed as μ=log2M binary parallel channels, 
each with capacity

Capacity over parallel channels adds:

As with the CM case, Monte Carlo integration may be used.

Modulator:
Pick Xk ∈ S
from (c1 … c μ)

Xk

Nk

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y Demapper:
Compute  λn
from set of f(Y|Xk)

f(Y|Xk)  λn
cn

),( nnn cIC λ=

∑
=

=
μ

1n
nCC



CM vs. BICM Capacity for 16QAM
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BICM-ID
(Li & Ritcey 1997)

A SISO decoder can provide side information to the 
demapper in the form of a priori symbol likelihoods.
– BICM with Iterative Detection The demapper’s output then 

becomes

Modulator:
Pick Xk ∈ S
from (c1 … c μ)

Xk

Nk

Receiver:
Compute f(Y|Xk)
for every Xk ∈ S

Y Demapper:
Compute  λn
from set of f(Y|Xk)
and p(Xk)

f(Y|Xk)  λn
cn

from
encoder

to decoder

p(Xk) from decoder
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Capacity Simulations in CML
sim_param(record).sim_type = ‘capacity’
Exact same parameters as for uncoded simulations
– SNR
– SNR_type = ‘Es/No in dB’
– framesize
– modulation
– mod_order
– channel
– bicm
– demod_type
– max_trials
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Exercises
Determine the capacity for
– BPSK in AWGN
– 64QAM with gray labeling in AWGN
– 64QAM with gray labeling in Rayleigh fading

Setup BICM-ID for
– 16-QAM with SP mapping in AWGN and (7,5) CC.
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Outline
1. CML overview

• What is it?  How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML 
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ
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Ergodicity
vs. Block Fading

Up until now, we have assumed that the channel is ergodic.
– The observation window is large enough that the time-average converges 

to the statistical average.
Often, the system might be nonergodic.
Example: Block fading

b=1
γ1

b=2
γ2

b=3
γ3

b=4
γ4

b=5
γ5

The codeword is broken into B equal length blocks
The SNR changes randomly from block-to-block
The channel is conditionally Gaussian
The instantaneous Es/No for block b is γb
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Accumulating Mutual Information
The SNR γb of block b is a random.
Therefore, the mutual information Ib for the block is also random.
– With a complex Gaussian input, Ib= log(1+γb)
– Otherwise the modulation constrained capacity can be used for Ib

b=1
I1 = log(1+γ1)

b=2
I2

b=3
I3

b=4
I4

b=5
I5

The mutual information of each block is Ib= log(1+γb)
Blocks are conditionally Gaussian
The entire codeword’s mutual info is the sum of the blocks’

(Code combining)∑
=

=
B

b
b

B II
1

1
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Information Outage
An information outage occurs after B blocks if

– where R≤log2M is the rate of the coded modulation

An outage implies that no code can be reliable for the 
particular channel instantiation
The information outage probability is

– This is a practical bound on FER for the actual system.

RI B <1

[ ]RIPP B <= 10



0 10 20 30 40 50
10

-6

10-5

10
-4

10
-3

10
-2

10-1

100

Es/No in dB

In
fo

rm
at

io
n 

O
ut

ag
e 

P
ro

ba
bi

lit
y

Modulation Constrained Input
Unconstrained Gaussian Input

B=1

B=2B=3B=4B=10

16-QAM
R=2
Rayleigh Block Fading

Notice the loss of diversity
(see Guillén i Fàbrebas and Caire 2006)

as B →∞,
the curve
becomes
vertical at
the ergodic
Rayleigh fading
capacity bound



2/24/2008
CML Overview

70/84

Outage Simulation Type
sim_param(record).
– blocks_per_frame

• Assumes block fading channel
– mod_order

• 0 for Gaussian input case
– rate

• Code rate.
• Outage whenever MI < rate

– combining_type = {‘code’, ‘diversity’}
– input_filename

• Required if mod_order > 0
• Contains results of a capacity simulation.
• Used for a table look-up operation
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Bloutage Simulation Type
Set up like an uncoded simulation
– framesize
– specify the modulation

• Set mod_order = 0 for unconstrained Gaussian input
– specify the channel (AWGN, Rayleigh, etc.)

Also requires the rate
Saves FER, not BER
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Outline
1. CML overview

• What is it?  How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML 
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ
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Main Program Flow
CmlSimulate
– ReadScenario

• Runs SingleRead for each record
• Performs sanity check on sim_param structure
• Initializes or restores the sim_state structure 

– For each record~
• SingleSimulate if a simulation
• Otherwise, runs one of the analysis functions:

– CalculateThroughput
– CalculateMinSNR
– CalculateMinSNRvsB
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SingleSimulate
Seeds random number generator
Branches into
– SimulateMod

• For uncoded, coded, and bloutage
– SimulateUGI

• For a blocklength-constrained outage simulation with unconstrained 
Gaussian input.

– SimulateCapacity
• For capacity

– SimulateOutage
• For outage 
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SimulateMod

Main subfunctions (coded/uncoded cases:
– CmlEncode
– CmlChannel
– CmlDecode

For bloutage, replace CmlDecode with
– Somap
– capacity
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SimulateCapacity
Operates like SimulateMod with sim_type = ‘bloutage’
– However, instead of comparing MI of each codeword against the 

rate, keeps a running average of MI.
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SimulateOutage
Randomly generates SNR for each block
Performs table lookup to get MI from SNR
Compares MI against threshold
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Outline
1. CML overview

• What is it?  How to set it up and get started?
2. Uncoded modulation

• Simulate uncoded BPSK and QAM in AWGN and Rayleigh fading
3. Coded modulation

• Simulate a turbo code from UMTS 25.212
4. Ergodic (Shannon) capacity analysis

• Determine the modulation constrained capacity of BPSK and QAM
5. Outage analysis

• Determine the outage probability over block fading channels.
• Determine the outage probability of finite-length codes

6. The internals of CML
7. Throughput calculation

• Convert BLER to throughput for hybrid-ARQ
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Hybrid-ARQ
(Caire and Tunnineti 2001)

Once              the codeword can be decoded with high reliability.
Therefore, why continue to transmit any more blocks?
With hybrid-ARQ, the idea is to request retransmissions until
– With hybrid-ARQ, outages can be avoided.
– The issue then becomes one of latency and throughput.

b=1
I1 = log(1+γ1)

b=2
I2

b=3
I3

b=4
I4

b=5
I5

RI B >1

RI B >1

R

NACK             NACK ACK            {Wasted transmissions}
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Latency and Throughput
of Hybrid-ARQ

With hybrid-ARQ B is now a random variable.
– The average latency is proportional to E[B].
– The average throughput is inversely proportional to E[B].

Often, there is a practical upper limit on B
– Rateless coding (e.g. Raptor codes) can allow Bmax →∞

An example
– HSDPA: High-speed downlink packet access
– 16-QAM and QPSK modulation
– UMTS turbo code
– HSET-1/2/3 from TS 25.101
– Bmax = 4
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T. Ghanim and M.C. Valenti, “The throughput of 
hybrid-ARQ in block fading under modulation constraints,” 
in Proc. Conf. on Info. Sci. and Sys. (CISS), Mar. 2006. 
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Conclusions: Design Flow with CML

When designing a system, first determine its capacity.
– Only requires a slight modification of the modulation simulation.
– Does not require the code to be simulated.
– Allows for optimization with respect to free parameters.

After optimizing with respect to capacity, design the code.
– BICM with a good off-the-shelf code.
– Optimize code with respect to the EXIT curve of the modulation.

Information outage analysis can be used to characterize:
– Performance in slow fading channels.
– Delay and throughput of hybrid-ARQ retransmission protocols.
– Finite codeword lengths.


